Member Login


Dr Themis Prodromakis

University of Southampton
Nano Group, Southampton Nanofabrication Centre
Southampton, SO17 1BJ, UK
+44 (0)23 8059 8803

A. Gelencser, T. Prodromakis, C. Toumazou and T. Roska, “A Biomimetic Model of the Outer Plexiform Layer by Incorporating Memristive Devices

Authors: A. Gelencser, T. Prodromakis, C. Toumazou and T. Roska

Published by:

In this paper we present a biorealistic model for the first part of the early vision processing by incorporating memristive nanodevices. The architecture of the proposed network is based on the organisation and functioning of the outer plexiform layer (OPL) in the vertebrate retina. We demonstrate that memristive devices are indeed a valuable building block for neuromorphic architectures, as their highly non-linear and adaptive response could be exploited for establishing ultra-dense networks with similar dynamics to their biological counterparts. We particularly show that hexagonal memristive grids can be employed for faithfully emulating the smoothing-effect occurring at the OPL for enhancing the dynamic range of the system. In addition, we employ a memristor-based thresholding scheme for detecting the edges of grayscale images, while the proposed system is also evaluated for its adaptation and fault tolerance capacity against different light or noise conditions as well as distinct device yields.

Funding Research Councils:
Developed by:   Symmetria Web Solutions logo Symmetria Web Solutions