Member Login


Dr Themis Prodromakis

University of Southampton
Nano Group, Southampton Nanofabrication Centre
Southampton, SO17 1BJ, UK
+44 (0)23 8059 8803

Computing Motion with 3D Memristive Grid

Authors: C.K.K. Lim and T. Prodromakis.

Published by: arXiv:1303.3067, Mar 2013.

Computing the relative motion of objects is an important navigation task that we routinely perform by relying on inherently unreliable biological cells in the retina. The non-linear and adaptive response of memristive devices make them excellent building blocks for realizing complex synaptic-like architectures that are common in the human retina. Here, we introduce a novel memristive thresholding scheme that facilitates the detection of moving edges. In addition, a double-layered 3-D memristive network is employed for modeling the motion computations that take place in both the Outer Plexiform Layer (OPL) and Inner Plexiform Layer (IPL) that enables the detection of on-center and off-center transient responses. Applying the transient detection results, it is shown that it is possible to generate an estimation of the speed and direction a moving object.

Funding Research Councils:
Developed by:   Symmetria Web Solutions logo Symmetria Web Solutions